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M I X E D  P R O B L E M  OF C R A C K  T H E O R Y  F O R  A N T I P L A N E  D E F O R M A T I O N  

V. A. Khandogin UDC 539.375 

The elastic equilibrium of an isotropic plane with one linear defect under conditions of 
longitudinal shear is considered. The strain field is constructed by the solution of a two- 
dimensional boundary-value Riemann problem with variable coe.~icients. A special method that 
reduce the general two-dimensional problem to two one-dimensional problems is proposed. The 
strain field is described by three types of asymptotic relations: for the tips of the defect, for the 
tips of the reinforcing edge, and also at a distance from the closely spaced tips of the defect 
and the rib. The general form of asymptotic relations for strains with finite energy is deduced 
from analysis of the variational symmetries of the equations of longitudinal shear. A paradox 
of the primal mixed bounda~-value problem for cracks is formulated and a method of solving 

�9 the problem is proposed. 

Mixed problems of crack theory have been insufficiently investigated at present. They have not been 
adequately addressed in known reference books [I, 2], although they are of both applied and theoretical 
ih~erest. A peculiarity of mixed problems for cracks, as will be shown, is the occurrence of unstable solutions 
that have paradoxical asymptotic expressions for internal force factors. At the tip of a defect, they can have 
any singularity from 0 to -1. The paradoxicality of such asymptotic expressions is due to their incompatibility 
with the variational symmetry of antiplane strain equations about the group of spatial shears that uniquely 
determines the classical form of asymptotic distribution of strain. It is shown that, under conditions of limited 
strength, it is impossible to attain defect shapes that lead to the indicated singular solutions. As a result, 
the paradoxical asymptotic expressions (which include solutions of the primal mixed boundary-vahe problem 
with singularities of orders of - 1 / 4  and -3 /4 )  can be used only to describe strains far away from the closely 
spaced tips of the defect and the rib, at which other asymptotic expressions are valid. At the same time, they 
can be used to estimate the strain-intensity coefficients at the tip of the defect. 

1 .  B o u n d a r y - V a l u e  P rob l em.  We consider the elastic equilibrium of an isotropic plane under 
longitudinal-shear conditions. The plane is weakened by a rectilinear cut along the segment of the real axis 
Ix[ < 1. The segment a < x < b on the lower side of the cut is reinforced by an infinitely thin elastic rib. By 
definition, the rib offers elastic resistance to shear strain only and does not resist tension-compression and 
bending. Such schematization is allowable if the rib consists of momentless elastic fibers (by the terminology 
of [3, 4]) that do not interact with one another and are directed at an angle of 45 ~ to the plane x01/. 

At infinity, the plane is loaded by a uniform load 7~ - 7~ - i7~ The sides of the defect are free 
from external forces, and rotation of the rib in its plane is prevented by internal moments (Fig. 1). 

Static equilibrium of the plane elements located on the sides of the cut is ensured by conditions of the 
form 

1, x E Lj,, 
"r+(x,O)=O, (XI+X3)'~+X2"Y~3=O, Xk(X)= O, x C L k ,  

(I.I) 
'7~3 = cx72a +/~'713, ot + i/3 -- e +i~, c~ = (1 + (c[#)2) -1/2, /~ = ac/# ,  
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where (713,723) are components of the shear-strain field, c is the shearing rigidity of the rib, p is the shear 
modulus of the main material, and Lk (k = 1, 2, 3) are the regions of the piecewise uniformity of the boundary 
conditions. The boundary conditions (1.1) combine the condition of a normal derivative on the upper side of 
the cut L and the lower sides of the lines L] and L3 and the condition of an oblique derivative on the lower 
side of the contour L2 (Fig. 1). 

T h e  strain field is conveniently represented as a superposition of the following three components: 

713 -- ~723 = 701 -I" 71(Z) -[" 172(Z)- (1.2) 

Here the unknown analytical functions 71(z) and 72(z) are in turn represented as Cauchy-type integrals with 
purely real densities. Calculating the limiting strains (1.2) on the contour of the defect and substituting them 
into boundary conditions (1.1), we come to the following boundary-value Riemann problem for the functions 
71(z) and 

71 + + (Xl + X3)71- + x2e-i~(cos ~71 - + sin ~72")= 2i(x1 + X3)"/0 + ix2(7~ + e-0'7~3), 

7"/2"1" -- (XI  "[" X3)"/2" "{" x2e-Gt( COs ~t"fl" -- sin X-y~') - Xz(-y~ : -  e- i~703).  (1.3) 

Here 703 = efT~ + ~7~ are the external strain in the oblique areas. In particular, the boundary-value problem 
for an ideal crack is obtained from relation (1.3) by three methods: Xl = 1 and X2 = X3 = 0, or X3 = 1 and 
Xl = X2 - 0, or )~ - 0. The primal mixed boundary-value problem (a rigid inclusion with a detached upper 
side) corresponds to the parameters X1 -- X2 - 0 and ~ = ~r/2. 

The additional condition of single-valued displacements and the absence of the principal vector force 
at the rib is written as the equality 

Res (71 + i72)L=oo - 0. (1.4) 

2. Solu t ion  of  P r o b l e m  (1.3). A distinctive feature of the two-dimensional boundary-value problem 
(1.3) is that its coefficient matrix is symmetric and is piecewise-constant. We construct its solution using 
a special method, which is much simpler than the general theoretical procedures described, e.g., in [5]. We 
briefly describe this method. 

In matrix designations, problem (1.3) has the form 

7 + - GT- -- f.  (2.1) 

We introduce a new vector of the unknowns, F(z) = C(z)7(z), where C(z) is an orthogonal analytical matrix: 

[ c o s w ( z ) - - s i n w ( z ) ]  (2.2) 
c ( z )  = sin ( ) cos ( ) " 

In the new unknowns, the boundary-value problem (2.1) is written as I "+ - C + G ( C - ) - I [  ' -  = F and F = C+f. 
The matrix C(z) is chosen so that the new coefficient matrix becomes a diagonal matrix. In this case, the 
two-dimensional boundary-value problem is divided into two independent one-dimensional Riemann problems. 
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Carrying out the program described above, we come to the conclusion that on L the rotation angle w(z) in 
matrix (2.2) should satisfy the boundary-value condition 

t o + + w - = w 0 ( x ) ,  zEL ,  too(z)=~r(kxl+mxs)+x2(l~r-)O, k,l,m=O,-4-1,+2,... (2.3) 

The unique solution of the auxiliary boundary-value problem (2.3) is obtained under the following 
restrictions: 

(1) At infinity, the function to(z) can have an apparent singularity. In particular, for the primal mixed 
boundary-value problem, it follows from conditions (1.3) that to(z) = -7r/4. 

(2) In the vicinity of the tips of the defect, the strains depend monotonically on the polar radius and 
do not vary. This is possible if the function to(z) is limited at these points. 

(3) In the vicinity of the tips of the rigid reinforcing rib (~ = 1r/2), the order of the singularity of 
strains is the same as in the problem of a rigid stamp (fib) on the boundary of a half-plane, i.e., -1/2 .  

But even under the restrictions adopted, the unique solution of problem (2.3) is obtained only after 
the general problem (1.3) is solved. Here we give only the final result: 

to(z) = Xo(z) +[' too(z____)) dz Xo(z) = ~ -  1, tooCz) = - lrX,(Z) - )~X2(Z). (2.4) 
21ri J_, X+(z)  z - z '  

Now, boundary-value problem (2.1) breaks up into two independent boundary-value problems for the 
new unknown subject to the conditions 

F+ + ( -X,  + X3 + x2e-iX)F+ = FI, F + - (-X1 + X3 + x2e-i'~)F + = F2, (2.5) 

and the shear field (1.2) is defined by the relation 

71s - i723 = 7 ~  + e - / ~ ( r ]  + iF2) .  (2.6) 

The solution of boundary-value problems (2.5) does not involve difficulties, and it is performed by the 
general rules for one-dimensional boundary-value Riemann problems [6]. We give the final formulas: 

r~(z) = xk(z) ~' F,(x___2) ~ k = 1, 2, 

x , ( ~ )  = ( ~ -  1 ) - I / ~ ( ~ -  a ) ' - l / 2 ( z -  b) -n,  , =  ~/2~,  (2.7) 

x2(~)  = (~ + 1)-1/'(~ - a)"-~/~(~ - b)-", 

F1 = f l  cos to + - f2 sin to+, F2 = f l  s in w + + f2 cos to+. 

Here fl  and f2 are the fight sides of the first and second equalities of (1.3), respectively. 
Thus, relations (2.4)-(2.7) are the results of the exact solution of the formulated problem (1.1) or (1.3) 

s,.:bject to condition (1.4). 
3. Equivalent  P rob lem.  For rectilinear defects located on the real axis, the following principle of 

correspondence holds. 
Let a solution of a certain boundary-value problem in the form (1.2) be known. Then the function 

~3 - i~23 = ~ o  + ~,(z) + i ~ ( ~ )  (3.1) 

is a solution of an equivalent boundary-value problem for which the boundary-value condition is obtained 
from the boundary-value condition of the initial problem by the substitution 

'7~ -+ T'2:F3, '7~ "~ TI:V3, '7O3 " *  '703 �9 (3.2) 

The validity of the correspondence is established from comparison of the limiting values of Cauchy 
type integrals that represent the functions 7̀1 (z) and `72(z). 

Let us formulate a boundary-value problem that is equivalent to problem (1.1). In the new problem, 
the defect is a rigid, infinitely thin inclusion along the segment Izl < 1. The lower side is directly connected 
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to the main material as is the segment X1 -" X3 -- 1 on the upper side. The remaining part of the upper side 
(X2 = 1) is connected to the main material via an elastic rib. In this ease, the parameters c and p in the 
formulas for the angle A (1.1) determine the compliances of the rib and the main material, respectively. The 
contour of the defect is free from external forces, and rotations of the defect in its plane are prevented by 
internal moments (Fig. 2). A uniform external load is applied at infinity. 

For this problem, the boundary condition is obtained from relations (1.1) by substitution (3.2), and 
the solution is 

7"13 --/,"r23 = 701 + e/W(V2(z) -I'- i V l ( z ) ) ,  (3.3) 

where the functions w, r l ,  and F2 are given by formulas (2.4) mad (2.7) in which the external strains are 
interchanged. 

We note that  the correspondence of (3.1) and (3.2) clarifies, the reason for the impressive uniformity 
of the problems of cracks and rigid inclusions [7]. The field of the rigid inclusion (3.3) naturally inherits all 
properties of the field for cracks (2.6). In what follows, we shall not dwell on this except in special cases. 

4. A s y m p t o t i c  Expre s s ions .  The strain field (2.6) has three forms of asymptotic expressions: for 
the tips of the defect, the tips of the rib, and far away from the closely spaced tips of the defect and the rib, 
respectively. Let us consider them. 

At the tips of the defect, the strains have a singularity typical of longitudinal-shear cracks [1, 2, 7]. For 
example, at the right tip, the asymptotic expression for the strain is as follows: 

. 

0 ' 1 3  - -  i'y23 ~ - i k 3 / p ~ 2 r  r -- z - 1, 1r ' ~  (1 - b), 

+I F l ( t )  at l, - a)"-1/2(1- b)-" [ ks = --~-~ (1 --  Xl+(t)  t - 1" (4.1) 
-1  

In particular, for a = b = 0, we obtain a common expression for a rectilinear cut: k3 = P7~3. In the 
other extreme ease where a rib has a large length (b --* I and a --* - 1 ) ,  the stress-intensity coefficient increases 
infinitely: 

1 -- 2n (I - a)"-I12(1 - b)-" + O(I + a) + O(i - b). (4.2) 
= v cos 

In the vicinity of the left tip of the defect, relations similar to equalities (4.1) and (4.2) hold. At the 
tips of the defect, the solution of the equivalent problem (3.3) has an asymptotic representation typical of a 
rigid inclusion: 

r13 - ir93 ~- s 3 / p ~ ' ~ .  (4.3) 

Here s3 is the stress-intensity coefficient, which coincides with values of k3 after substitution (3.2). 
In the vicinities of the rib tips, it is necessary to take into account the logarithmic singularity of the 

function w(z). In this case, on the .upper free side, the strains are continuous at both tips of the rib. In the 
vicinity of the right end of the rib from below, the strains are described by the asymptotic relations 

A - i B  
71:1 - -  i 7 2 3  ~ ~ - 2 n  ' ~2 ~ Z - -  b, 1r << (1 - b), a - i B  = ~irnb(z - b)n(F] + iF2). (4.4) 
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Fig. 3 

In particular, for zero length of the rib (a = b), the intensity coefficient A - i B  in the asymptotic 
relation (4.4) vanishes, and in the opposite limit of a great length of the rib (b ~ 1 and a - ,  - 1 ) ,  we obtain 

A - - i S - -  ('y03 - "}'03)(1 - rt) ( b+  1 ) - 1 / 2 ( b - a )  n - l /2  
2 sin nlr 

- - i  (3'03 -k 703)(1 - -  2 n ) ( b -  1)-1/2(b - a) n - l /2  + O(1 - - b )  + O(1 + a). (4.5) 
2 COS rtTi" 

The solution of the problem of a rigid inclusion (3.3) has continuous strains from below, and on the 
upper side near the right tip of the elastic rib, we have 

rla - ir23 ~ ( B  - i A ) ] ( 2  2". (4.6) 
The asymptotic relations for the strains at the left tips of the rib have the same structure but the order 

of the singularity is (2n - 1). In this case, in the limit of an absolutely rigid rib for solution (2.6) [and a crack 
for (3.3)] the asymptotic relations (4.4) and (4.6) describe a standard singularity of order ( -1 /2 ) ,  according 
to the restriction of Sec. 3. In the other extreme case of infinitesimal rigidity of the reinforcing rib (n - ,  0), 
solution (2.6) becomes a solution for a crack with free sides, and the corresponding intensity coefficient in 
the asymptotic relation for the left tip of the rib vanishes. In the general case, the proof of this fact is rather 
cumbersome. Below, it is illustrated by an example. 

Finally, asymptotic expressions of the third type describe the strain field at a distance from the closely 
spaced tips of the defect and the elastic rib. For example, at the right tips we obtain the asymptotic equalities 

,~ eiX/z (_ .-112-., ) 713 i77a = i qaga + ica2~i-"_, 
= l i n ] { ( z -  1 ) n + l / 2 ~ F l ( z ) } ,  ~3 - z -  1, (4.7) Cll 

c12 = (1 - b )  << 1 231 << 1, 

and for the vicinity of the left tips, we have the relation 

"/13 - i723 ~- e i~/2 (c21~4 112+n -{- ic22~41+n), ~4 -- z -{- 1, (1 + a) << lr ~< 1. (4.8) 

The dependences of c21 and c22 on the functions F1 (z) and I'z(z), respectively, are similar to the dependences 
for q l  and c12. The factor c22 vanishes in the limit n --* 0 as does the stress-intensity coefficient near the left 
tip of the rib. 

5. E x a m p l e .  Let a reinforcing rib occupy the entire lower side of the defect, i.e., b = - a  = 1. 
Appropriate boundary-value conditions are obtained from equalities (1.3) or (2.5) for Xl = X3 = 0, X3(X) - 1, 
and w(z)  = -A[2.  Integrals (2.7) are calculated in elementary functions, and the strain field (2.6) near this 
defect (Fig. 3) has the form 

713 -- i723 = 7~ + i(7~ + 7~3) {1 - (z  -- 2 n ) X l ( z ) }  
1 + e ix 

" 0 0 

Z(723 -- 7~3) {1 (z 1 "l- T---'-e" ~ -- + -- 2n )X2(z ) } ,  (5.1) 

where the functions X l ( z )  and X2(z) are defined by formulas (2.7) for b = - a  = 1. The field (5.1) has only 
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the third type of asymptotic expressions (4.7) and (4.8). In the limit of an infinitely rigid rib (A = ~'/2 and 
n = 1/4), equality (5.1) is a solution of the primal mixed boundary-value problem. But the highest order of 
the singular terms occurs for weak reinforcement. For a small value of n, expression (5.1) has the following 
structure of the main singular terms: 

iz7~ 27~ - 1)-n(z -1- 1) "-1 + O(n). (5.2) 713 - i723 = 7~ ~G~ - 1 

Here the first two terms on the right side give an exact solution for the crack with free sides, and the last two 
terms determine the strain redistribution under the influence of a rib of small rigidity. From equality (5.2) it is 
evident that the stress-intensity coefficient for the left tip of the defect is proportional to the small parameter 
n and, hence, in the limit n -+ 0, it vanishes. The stress redistribution postulated by solution (5.2) is due to 
the fact that, by the data given, the rotations of the rib in its plane are prevented by the internal moment. 
The possible rotations of the rib are similar to the additional field ~/~ s. It remains to calculate the internal 
moment that holds the rib. For the complete solution (5.1), the required quantity m has the form 

m = - I m  /z(Tyls -iq '2s)dz = lr7~ sin A(8n 2 - 1 )  _r71~ ( 2A__) "-~ T 4n2 cos A + sin 2 , 

where the path of integration encloses the defect, and, hence, the parameter rn is equal to the principal 
moment acting on the defect. 

6. Paradox of the Primal Mixed Boundary-Value Problem. Solution (5.1) is incompatible 
with the variational symmetry of the antiplane deformation equations about the group of spatial shears. To 
derive this contradiction, we consider the variational symmetries of the problem. Using the general methods 
described, e.g., in [8, 9], we obtain 

Sta temen t .  The vector field 6kOt generates zero divergences of the form 

oi 6jL-g;-2,oj6k,ok = 0 ,  w j = O j , ~  (6.1) 

for the Lagran#ian of the static antiplane strain of a homogeneous isotropic media. Here w is the scalar of 
displacements if the generatrices satisj~/ the Cauchy-Riemann relations 

6 6  - 0262 = o, & 6  + 0261 = o. (6.2) 

This statement is proved by substitution of equalities (6.1) and (6.2) into the condition of variational 
symmetry [8, p. 328] and can be extended to orthotropic media with appropriate modification of the second 
equation of (6.2). 

Divergences (6.1) are conveniently written in integral form with allowance for complex representations 
for the fields. Omitting calculations, we write the final result as 

ip 
I[#1 = T / #(z)(713 - i723)2 dz, (6.3) 

$ 

where 2q~(z) ~- 61 + i62 is the complex generatrix of the vector field generating variational symmetry and 
S is an arbitrary closed contour. If the contour S is in the region of holomorphism of the field (71:1 - i723) 2, 
then I[~] = 0 is a zero divergence generated by the field with a generatrix ~(z). In particular, spatial shears, 
as usual, lead to invariant J integrals with components J1 and J2 and a generatrix q~(z) = 1, related by the 
equality 

I[11 = Jx - iJ2. (6.4) 

The rotations and dilatations are responsible for the conservation and invariance with respect to the 
shape of the contour 3" of moment integrals of the form 

I[z] = N + i M  = -~  z ( 'n3  - i723) 2 dz.  (6.5) 
S 
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As is known, formula (6.4) was also obtained as an invariant integral of the first kind by another method 
[10]. The existence of invariants related to the groups of rotations and dilatations in the three-dimensional and 
planar theory of elasticity is established in [11]. Formula (6.5) specifies their form for the antiplane problem. 
The general expressions (6.1)-(6.3) describe the quantities conserved for an arbitrary conformal mapping. 
They are not reduced to invariant integrals of the second kind [10] and allow one to determine the structure 
of the strain field at any point of a body containing a linear defect (by definition, the contours of the defect 
are free from external forces and, hence, logarithmic singularities do not arise). Omitting obvious reasoning, 
we write the final result for the case where the contour S encloses one singular point of the field (713 - i3'23) 2 
with an affix z = z0: 

1 co 
(3'13 - i3'2a) 2 = f(z) - --~ ~ Ik(z - zo) -k, Ik+l -- l[(z- z0)k]. (6.6) 

k=l 

Here f(z) is the regular portion of the strain square in the vicinity of z0. 
What conclusions regarding the strain field can be drawn from expansion (6.6)? Generally, extraction 

of the square root leads to a rather complex and useless expression. We consider the most important particular 
case that follows from the following two restrictions: 

1) The equalities are considered asymptotically; 
2) We restrict ourselves to linear defects about which the displacements are finite and the energy is 

integrable. 
In this case, the main part of expression (6.6) contains only one term, which uniquely determines the 

asymptotic strain relations 

(6.7) 3'13 - -  i3 '23 ~ 4"i V l r p ( z  _ zo)" 

Thus, equality (6.7) establishes the general form of the asymptotic strain distribution at the tip of a 
linear defect that corresponds to the variational symmetry of the equations about spatial shears. In particular, 
asymptotic relations for a crack (4.1) and rigid inclusions (4.3) coincide with the general form. Asymptotic 
relations with other singularities, for example (4.7) and (4.8), are incompatible with the variational symmetries 
of (6.1)-(6.3). We come to a contradiction. 

7. Solut ion of  t h e  Paradox .  The general case of solutions (2.6) and (3.3), where b # 1 and a # 
-1 ,  meets the requirements of variational symmetry because the asymptotic relations for the tips of the 
defects coincide with expression (6.7). The paradoxical properties of the field (5.1) axe due to the fact that 
it corresponds to the special state of instantaneous rearrangement of solution (2.6) with the asymptotic 
expression for cracks (4.1) to solution (3.3) with the asymptotic expression for rigid inclusions (4.3) in the 
hypothetical process of continuous variation in the length of the rib at the moment when b = - a  = 1. Avoiding 
a formal analysis of this singularity, we determine whether the state (5.1) can be realized under conditions of 
limited strength of the material. The answer to this question is negative. 

We assume that a certain hypothetical process, as mentioned above, makes possible continuous variation 
in the length of the reinforcing rib within the limits of applicability of solution (2.6). For definiteness, we 
consider an absolutely rigid rib in the vicinity of the right tip of a defect (Fig. 4a). As the parameter b 
(Fig. 4b) increases, the values of ka also increases infinitely by formula (4.2). When it reaches a certain critical 
level kae, one of the two following variants is possible: slow steady crack growth begins if the strength of 
the main material is sufficiently small compared to the adhesion strength (Fig. 4c) or the rib separates from 
the main material if the inverse ratio of these parameters is inverse (Fig. 4d). A similar picture emerges for 
solution (3.3). The slow growth of the crack (in a certain hypothetical process) on the upper side (Fig. 5a and 
b) ceases when the parameter b in the asymptotic relation (4.6) reaches the adhesion strength level. Rapid 
supercritical growth of this crack leads to one of the two new steady states (Fig. 5c and d), which are similar 
to those shown in Fig. 4c and d. 

Thus, under conditions of limited strength, the state (5.1) cannot be attained from solution (2.6) or 
from solution (3.3) because it corresponds to the subcritical phase of a brittle crack. The defect configurations 
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shown given in Fig. 5a and b are unstable. As b --* 1, they become the other forms shown in Fig. 4c and d 
and Fig. 5c and d. Solutions of type (5.1) can be used only to estimate the strain field far away from closely 
spaced tips of the defect and the rib. However, they can be employed to estimate the intensity coefficient from 
comparison with the asymptotic relations for the near zone. For example, for an absolutely rigid rib and the 
right tips we have the following asymptotic relations: 

1 - i  ~-3/4 3(1+i) ~-1/4 1], 
4 - " ~  (''f~ +72~ + 4r ("y03--~203) [ ( l - b )  << r << 

3'13 - i723 = i(1 - b) -1/4 ~-llz 
- 2~/2 (-y~ 3 +703) [r ~ (1 - b)]. 

The stress-intensity coefficient can be obtained by coupling these asymptotic relations by one or another 
known method. 

8. Conclusions.  
1. We considered a number of mixed problems of the theory of longitudinal-shear cracks that originate 

from the problem of a plane with a rectilinear cut whose lower side is partly reinforced by an elastic rib (1.1). 
2. The boundary-value problem (1.3) is solved using a special method consisting in diagonalization 

of the coefficient matrix by the orthogonal analytical matrix (2.2), which, in turn, is determined from an 
auxiliary boundary-v-~lue problem with condition (2.3). 

3. An equiwlent problem of a rigid inclusion is formulated, and its exact solution (3.3) is constructed. 
4. The exact solution of problem (2.6) has three forms of asymptotic strain relations (4.1), (4.4), and 

(4.7). The main properties of these relations are discussed. 
5. A primal mixed problem whose solution (5.1) has only one form of asymptotic expressions (4.7) and 

(4.8) is considered in detail. 
6. The general form of the asymptotic strain relations due to the group of spatial shears (6.7) is 

constructed from an analysis of the variational symmetries of the Lagrangian of antiplane deformations (6.1). 
A paradox of the primal mixed problem is formulated. A solution for this paradox is proposed based on the 
fact that paradoxical solutions cannot be realized under conditions of limited accuracy. 

This work was supported by the regional program "Resource-Saving Technologies and Devices." 
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